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Absence of certain exchange driven instabilities of an electron gas at high densities
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In the high-density limit the exchange energy easily overcomes the correlation energy in both two- and
three-dimensional electron liquids. It is therefore reasonable to inquire if the class of exchange driven insta-
bilities first discussed by Overhauser within the Hartree-Fock theory could be of relevance in this limit. Our
analysis shows that this is not the case at least for distorted states represented by a single Slater determinant.
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The high-density limit ground state of an electron liquid
has been “known” for quite some time. In this regime, one in
which r,, the average distance between electrons expressed
in Bohr radii, is vanishingly small, the kinetic energy domi-
nates and the role of the Coulomb interaction is reasonably
expected to be that of a perturbation.! Of course that in this
limit the electron liquid problem be perturbative in nature is
only a very reasonable assumption for, in principle, nothing
prevents the electrons to revel in an, to date unknown, exotic
broken symmetry ground state.

It is precisely under this perturbative point of view
that one is led in the three-dimensional case to the following
familiar'?> expression for the energy per particle (in
Rydbergs):?
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where the jellium model of the electron liquid has been as-
sumed for simplicity. In the two-dimensional case a similar

expression applies:*>
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As one would expect, the kinetic aspects of the problem
becoming increasingly important, it is the exchange energy,
with its kinematic origin, that dominates the Coulomb inter-
action contributions: The correlation energy becomes seem-
ingly irrelevant for r;,— 0. It is therefore reasonable to enter-
tain the notion that the type of exchange driven instability of
the homogeneous paramagnetic state discovered by A. W.
Overhauser® be relevant in this regime.

As Overhauser showed, if correlation effects are ne-
glected (i.e., if the wave function is taken to be a simple
Slater determinant of one-electron orbitals), it is always
possible to lower the energy of an otherwise homogeneous,
paramagnetic electronic liquid, by introducing in it certain
spin- and charge-density-wave-type distortions.®” This
mechanism results in corresponding spin-density wave
(SDW), charge-density wave (CDW) and mixed CDW-SDW
states.® What is rather remarkable is that Overhauser’s insta-
bility theorem, while crucially depending on the long range
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of the Coulomb interaction, is valid for all densities. This
suggests that, by going to sufficiently high density, one might
enter a regime in which the correlation energy becomes ir-
relevant and therefore is no longer able to preempt the ex-
change driven instability. In particular one may wonder if a
single Slater determinant with SDW character might have
lower energy than the fully correlated homogeneous ground
state. For this to happen, however, it is not sufficient that the
correlation energy be much smaller than the exchange en-
ergy. A much stronger condition must be satisfied, namely
that the correlation energy”!® be smaller than the exchange
energy gained in an SDW or CDW distorted single Slater
determinant. We will show that this is not the case. The ex-
change energy gained by going from the homogeneous Slater
determinant to a Slater determinant with SDW character is
exponentially small at high density, and is therefore totally
swamped by the correlation energy of the homogeneous
Fermi liquid ground state.

We begin by discussing some of the crucial details of the
Overhauser’s instability theorem at zero temperature. Al-
though perhaps less pictorial than the original, we find more
straightforward and accessible to proceed with an algebraic
version of the proof. The latter involves employing the den-
sity matrix operator whose matrix elements in the plane
waves representation are defined by pj,., ,;M:<d}£rdl;ﬂ>. For ex-
ample a single Slater determinantal paramagnetic state made
out of plane waves can be represented by the following den-
sity matrix:
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We then postulate a single Slater determinant state con-

structed by occupying not plane waves but rather the dis-
torted wave functions,
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This corresponds to a SDW, a CDW or a mixed state depend-
ing on the choice of the distortion amplitudes A’s. Notice that
this state does not represent a self-consistent solution of the
Hartree-Fock equations and should be only taken as a suit-
able variational state.

The corresponding modified density matrix is readily seen
to be given by
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where the correction 6pg, 5, can be inferred from the form of
Eq. (4). A

Then, if one makes the educated choice Q=2kgn1, with 7ii
an arbitrary unit vector in two or three dimensions, the con-

dition |I€ * é| > ky is automatically satisfied when k <k and
the only nonvanishing matrix elements of dp have the form
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At this point we simply introduce a variational Ansatz for
the amplitudes, i.e., choose
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where 6 is the angle between k and Q and b is a sufficiently
small arbitrary positive variational parameter. Moreover for
the sake of argument we take Az 5 ;-0  =—Air0ni-0n.1>
which is the case of a linear spin-density wave.

At this point the change in energy AE associated with the
distortion can be readily evaluated to lowest order in the
amplitudes by means of the general formula involving the
corrections to the density matrix:
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where ¢ are the Hartree-Fock eigenvalues in the uniform
paramagnetic phase.

A direct inspection of the expression obtained by substi-
tuting the explicit formula of Eq. (7) into Eq. (8) leads to the
following result:
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where it suffices to know that «, 8 and vy are all positive. In
this expression the second term comes from the exchange
while the third one is due to the kinetic energy. The first term
is best described as an interaction contribution to the kinetic
energy. It is important to realize that the structure of this
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formula (in particular, the [In b| in the second term) is a
direct consequence of the long range of the Coulomb inter-
action: The use of a screened interaction would qualitatively
spoil the analysis.

Equation (9) shows that, if the correlation energy is for a
moment neglected (i.e., within Hartree-Fock), for a given r;
one can always construct a distorted state of lower energy.
For the exchange signature term, the second one, can always
be made to overcome the first one for sufficiently small val-
ues of the variational parameter b. This suffices to establish
Overhauser’s instability theorem in both two and three di-
mensions.

Consider next the situation in the high-density limit. In
this case it is the third, and usually neglected contribution in
Eq. (9) that is of relevance since in this case it forces the
value of b to be of order

bze-\/ﬁzr. (10)

s
This leads to an energy gain associated with the distortion of

order e~ 16[;%/ rf/ 2, something that is easily defeated even by
the vanishingly small correlation energy contributions of
Egs. (1) and (2).

The overall picture is then clear. Although in the high-
density limit the exchange energy is much larger than the
correlation energy, the kinetic energy is even larger than the
exchange energy and endeavors to keep the system uniform.
In order to avoid the kinetic energy cost, the SDW deforma-
tion must be restricted to an infinitesimally small region of
the Fermi surface (exponentially vanishing b). But then, at
least for a single Slater determinant SDW state, the energy
gain is also vanishingly small, and cannot compete with the
correlation energy of the uniform state.

This picture does not depend on the specific form of the
deformation chosen in Eq. (7). Any deformation that is soft
enough to allow the exchange energy to prevail on the ki-
netic energy, will be far too small to lower the energy below
that of the exact homogeneous ground state.

Thus, the main tenet of the Fermi liquid theory—the
stability of the homogeneous phase at sufficiently high
density—is, within the present study, fully vindicated. It
must however be noted that the statement cannot be gener-
alized to include all distorted states since, even at high den-
sity, to date it has not been possible to write down and obtain
the energy of a fully correlated SDW or CDW distorted state.

We note in closing that the analysis presented in this pa-
per, including a proof of Overhauser’s instability theorem,
has recently been extended to the case of a two-dimensional
electron gas with linear Rashba spin-orbit coupling.!!
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